Electrically Controlled Rotor Blade Vortex Interaction Airloads and Noise Analysis Using Viscous Vortex Particle Method

Author:

Su Taoyong1,Lu Yang1ORCID,Ma Jinchao1,Guan Shujun1

Affiliation:

1. National Key Laboratory of Rotorcraft Aeromechanics, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Abstract

An electrically controlled rotor (ECR), also called a swashplateless rotor, replaces a swashplate with a trailing-edge flap system to implement primary rotor control. To investigate the aerodynamic characteristics of an ECR in blade-vortex interaction (BVI) condition, an analysis model based on the viscous vortex particle method, ECR blade pitch equation, and the Weissinger-L lifting surface model is established. In this model, the ECR wake flow field vorticity is discretized as multiple vortex particles, and the vorticity-velocity form of the Navier-Stokes equation is solved to simulate the transport diffusion of the vorticity. The flap motion-inducing blade-pitch movement is obtained by solving the ECR blade-pitch movement equation via the Runge–Kutta fourth-order method. On the basis, BVI noise radiation of an ECR is evaluated using the Ffowcs Williams and Hawkings (FW-H) equation. Based on the present prediction model, the aerodynamic and acoustic characteristics of a sample ECR in BVI condition are analyzed. The results show that since the BVI event of the ECR on the advancing side is mainly caused by the interaction between the flap tip vortex and the blade, the blade spanwise range of ECR BVI occurrence on the advancing side is smaller than that of the conventional rotor. In addition, the magnitude of the maximum sound pressure level on the advancing side as well as on the retreating side of the ECR is also different from that of the conventional rotor, which is consistent with the difference in the airloads between the ECR and conventional rotor. Furthermore, a study was performed to examine the effect of the pre-index angle on the BVI-induced airloads and noise. The amplitude of the impulsive airloads of the ECR on the advancing side is increased with the increase in pre-index angle, while the amplitude of the impulsive airloads of the ECR on the retreating side is decreased. Indeed, when the pre-index angle of the sample ECR is 8 degrees, the retreating-side noise radiation lobe is almost disappeared. In addition, the different intensity of wake vorticity is the main reason for the differences of the BVI-induced airloads and noise among the ECR with different pre-index angles.

Funder

National Key Laboratory Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3