A Simulation Study for Lateral Stability Control of Vehicles on Icy Asphalt Pavement

Author:

Zhu Yunsheng1ORCID,Li Huacong1ORCID,Wang Kaifeng1ORCID,Bao Yunhan2ORCID,Zeng Peng3ORCID

Affiliation:

1. School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China

2. Central & Southern China Municipal Engineering Design and Research Institute Co Ltd, Huizhou, China

3. Hubei Provincial Communications Planning and Design Institute Co Ltd, Zhengzhou, China

Abstract

Black ice is an ice layer formed by freezing rain or accumulated water on the asphalt pavement surface in cold weather. This ice layer completely shields the texture structure of the pavement and destroys the original microstructure. The direct contact between the automobile tire and the ice surface leads to a sharp decrease in the adhesion coefficient, so the automobile is prone to lateral instability on the icy pavement. In this paper, the simulation model of the icy pavement is established in Matlab/Simulink to verify the control effect of the lateral stability controller based on the Electronic Stability Program under two steering limit conditions. The results show that the vehicle without a lateral stability controller will lose stability and sideslip even when it is steering at low speed on the icy pavement, and the lateral stability controller can effectively control the yaw rate of the vehicle when it is steering, which greatly reduces the offset of the sideslip angle of the centroid and inhibits the lateral acceleration exceeding the ice surface limit, which improves the maneuverability and stability of the vehicle under the freezing limit condition. The application of the controller is of great significance to improve the driving safety of the regional asphalt pavement. Due to the low adhesion coefficient of the icy pavement and the limited braking force and additional yaw moment of the tire provided by the adhesion force, the vehicle with a lateral stability controller is still likely to lose stability under the critical condition of medium or high-speed single shift line.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Reference17 articles.

1. Electric Power Steering on Low Friction Coefficient Road

2. The Vehicle Dynamics Control System of Bosh;A. T. Van Zanten

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3