An adaptive model predictive control for coupled yaw and rollover stability of vehicle during corner maneuvers

Author:

Kumar AbhayORCID,Dheer Dharmendra Kumar,Verma Suresh KantORCID

Abstract

This paper presents a control strategy to achieve yaw and roll stability by taking into account the physical interaction between the yaw and roll dynamics to prevent vehicle collisions in hilly or curved terrain. The mathematical model is formulated utilizing a roll dynamic model with a small tyre slip angle and a bicycle model with two degrees of freedom considering coupling of yaw and roll dynamics. An adaptive model predictive controller and a PID controller are included in the proposed control methodology so that a real-time scenario of variation in the longitudinal velocity and friction coefficient is considered. Stability limits are established based on the yaw rate, sideslip, and roll motions of the vehicle, taking into account the effects of the road angle. The friction coefficients of 0.4 and 0.8 are chosen for wet and dry road surfaces to show manoeuvrability and force the vehicle to avoid rollover condition. Using numerical simulations in Matlab R2022a, the effectiveness of the designed controller is assessed. A root mean square error (RMSE) is calculated for the proposed methodology for the evaluation of the performance and the values are obtained as 3.032 and 3.912 for friction coefficient of 0.8 for yaw rate and roll angle respectively. On comparing with the other methodology, it is found that the performance of the proposed method is better based on RMSE. Also, the fluctuations at the corners are removed and the variables are bound inside the stability limit, thus avoiding the vehicle from accidents in hilly areas. The robustness of the controller towards increasing the mass of the vehicle by 5% and 10% is found to be good.

Publisher

Universiti Malaysia Pahang Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3