A Method for Prediction the Trajectory of Table Tennis in Multirotation State Based on Binocular Vision

Author:

Cai Guan Lan1ORCID

Affiliation:

1. Sports and Public Art Department, Zhengzhou University of Aeronautics, Henan, Zhengzhou 450015, China

Abstract

The research on the space trajectory of high-speed moving and flying objects has very important research significance and application value in the fields of sports, military, aerospace, and industry. Table tennis has the characteristics of small size, fast flight speed, and complex motion model. It is very suitable as an experimental object for the study of flying object trajectory. This study takes table tennis as the research object to carry out research on the trajectory prediction of flying objects and builds a trajectory prediction system based on the trajectory prediction model, combining the constraints of the simple physical motion model and the deviation correction of the double LSTM neural network. Aiming at the problem of trajectory extraction of flying table tennis balls, a high-speed industrial camera was used to build a table tennis trajectory extraction system based on binocular vision. A multicamera information fusion method based on dynamic weights is proposed for the prediction of the trajectory of flying table tennis. In order to solve the problems that some model parameters are difficult to measure and the model is too complicated in the traditional physical motion model of table tennis trajectory, a method combining simple physics is proposed. This paper proposes a trajectory prediction model with motion model constraints and dual LSTM neural network bias correction. Experiments show that the proposed method can greatly improve the accuracy of the trajectory extraction and prediction system and can achieve a certain success rate of hitting.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research and Implementation of Table Tennis Sport Simulator Based on Physical Theory;2023 8th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC);2023-11-03

2. Development of a model to predict the throwing trajectory of a rice seedling;Computers and Electronics in Agriculture;2023-08

3. Binocular Vision-Based Recognition Method for Table Tennis Motion Trajectory;Mobile Information Systems;2022-08-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3