A Hybrid Approach Based on Variational Mode Decomposition for Analyzing and Predicting Urban Travel Speed

Author:

Kim Eui-Jin1ORCID,Park Ho-Chul2ORCID,Kho Seung-Young3,Kim Dong-Kyu3ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, Seoul National University, Seoul 08826, Republic of Korea

2. Department of Transportation Engineering, Myongji University, Yongin 17058, Republic of Korea

3. Department of Civil and Environmental Engineering and Institute of Construction and Environmental Engineering, Seoul National University, Seoul 08826, Republic of Korea

Abstract

Predicting travel speeds on urban road networks is a challenging subject due to its uncertainty stemming from travel demand, geometric condition, traffic signals, and other exogenous factors. This uncertainty appears as nonlinearity, nonstationarity, and volatility in traffic data, and it also creates a spatiotemporal heterogeneity of link travel speed by interacting with neighbor links. In this study, we propose a hybrid model using variational mode decomposition (VMD) to investigate and mitigate the uncertainty of urban travel speeds. The VMD allows the travel speed data to be divided into orthogonal and oscillatory sub-signals, called modes. The regular components are extracted as the low-frequency modes, and the irregular components presenting uncertainty are transformed into a combination of modes, which is more predictable than the original uncertainty. For the prediction, the VMD decomposes the travel speed data into modes, and these modes are predicted and summed to represent the predicted travel speed. The evaluation results on urban road networks show that, the proposed hybrid model outperforms the benchmark models both in the congested and in the overall conditions. The improvement in performance increases significantly over specific link-days, which generally are hard to predict. To explain the significant variance of the prediction performance according to each link and each day, the correlation analysis between the properties of modes and the performance of the model are conducted. The results on correlation analysis show that the more variance of nondaily pattern is explained through the modes, the easier it was to predict the speed. Based on the results, discussions on the interpretation on the correlation analysis and future research are presented.

Funder

National Research Foundation

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3