Kinodynamic Trajectory Optimization of Dual-Arm Space Robot for Stabilizing a Tumbling Target

Author:

Yan Lei1,Yuan Han1,Xu Wenfu1ORCID,Hu Zhonghua1,Liang Bin2

Affiliation:

1. School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, China

2. Department of Automation, Tsinghua University, Beijing, China

Abstract

Capturing and stabilizing tumbling targets using dual-arm space robots are very crucial to on-orbit servicing task. However, it is still very challenging due to the complex dynamics coupling and closed-chain constraints between the manipulators, the base, and the target. In this paper, a kinodynamic trajectory optimization method is proposed to generate the motion of a dual-arm space robot for stabilizing the captured tumbling target, which is formulated and solved as a nonlinear programming problem using direct collocation. Instead of optimizing the trajectory of each joint with the dynamics model of space robot, this method optimizes the trajectory of the tumbling target while considering the kinematics and dynamics constraints between the two arms and the target simultaneously. The objective function of the optimization is defined as weighted detumbling time, base disturbance, and manipulability, in order to avoid singularity and save the energy of space robot for further manipulation. Several physical simulations are carried out to validate the proposed method.

Funder

Guangdong Basic and Applied Basic Research Foundation

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3