Omnidirectional Continuous Movement Method of Dual-Arm Robot in a Space Station

Author:

Zhang Ziqiang1ORCID,Wang Zhi1,Zhou Zhenyong1,Li Haozhe1,Zhang Qiang2,Zhou Yuanzi2,Li Xiaohui2,Liu Weihui2

Affiliation:

1. Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China

2. Beijing Key Laboratory of Long-Life Technology of Precise Rotation and Transmission Mechanisms, Beijing Institute of Control Engineering, Beijing 100094, China

Abstract

The burgeoning complexity of space missions has amplified the research focus on robots that are capable of assisting astronauts in accomplishing tasks within space stations. Nevertheless, these robots grapple with substantial mobility challenges in a weightless environment. This study proposed an omnidirectional continuous movement method for a dual-arm robot, inspired by the movement patterns of astronauts within space stations. On the basis of determining the configuration of the dual-arm robot, the kinematics and dynamics model of the robot during contact and flight phases were established. Thereafter, several constraints are determined, including obstacle constraints, prohibited contact area constraints, and performance constraints. An optimization algorithm based on the artificial bee colony algorithm was proposed to optimize the trunk motion law, contact point positions between the manipulators and the inner wall, as well as the driving torques. Through the real-time control of the two manipulators, the robot is capable of achieving omnidirectional continuous movement across various inner walls with complex structures while maintaining optimal comprehensive performance. Simulation results demonstrate the correctness of this method. The method proposed in this paper provides a theoretical basis for the application of mobile robots within space stations.

Funder

Beijing Natural Science Foundation for Distinguished Young Scholars

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3