Identification of Functional Modules and Key Pathways Associated with Innervation in Graft Bone—CGRP Regulates the Differentiation of Bone Marrow Mesenchymal Stem Cells via p38 MAPK and Wnt6/β-Catenin

Author:

Wu Ziqian1ORCID,Wang Xudong2,Shi Jingcun1,Gupta Anand3,Zhang Yuhan1,Zhang Bingqing1,Cao Yang45ORCID,Wang Lei16ORCID

Affiliation:

1. Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China

2. Department of Stomatology, Oriental Hospital, Tongji University, 200120, Shanghai, China

3. Department of Dentistry, Government Medical College & Hospital, 160030, Chandigarh, India

4. Clinical Epidemiology and Biostatistics, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 70182, Örebro, Sweden

5. Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, Sweden

6. Department of Stomatology, Fengcheng Hospital, Fengxian District, Shanghai 201411, China

Abstract

Bone resorption occurs after bone grafting, however, contemporaneous reconstruction of the innervation of the bone graft is a potential treatment to maintain the bone mass of the graft. The innervation of bone is an emerging research topic. To understand the potential molecular mechanisms of bone innervation after bone grafting, we collected normal iliac bone tissue as well as bone grafts with or without innervation from nine patients 1 year after surgery and performed RNA sequencing. We identified differentially expressed genes) from these samples and used the gene ontology and Kyoto Encyclopedia of Genes and Genomes databases for functional enrichment and signaling pathway analysis. In parallel, we established protein–protein interaction networks to screen functional modules. Based on bioinformatic results, we validated in vitro the osteogenic differentiation potential of rat bone marrow mesenchymal stem cells (BMMSCs) after calcitonin gene-related peptide (CGRP) stimulation and the expression of p38 MAPK and Wnt6/β-catenin pathways during osteogenesis. Our transcriptome analysis of bone grafts reveals functional modules and signaling pathways of innervation which play a vital role in the structural and functional integration of the bone graft. Simultaneously, we demonstrate that CGRP regulates the differentiation of BMMSCs through p38 MAPK and Wnt6/β-catenin.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3