Estimation of the Tail Index of Pareto-Type Distributions Using Regularisation

Author:

Ocran E.1ORCID,Minkah R.1ORCID,Kallah-Dagadu G.1ORCID,Doku-Amponsah K.1ORCID

Affiliation:

1. Department of Statistics and Actuarial Science, School of Physical and Mathematical Sciences, University of Ghana, Accra, Ghana

Abstract

In this paper, we introduce reduced-bias estimators for the estimation of the tail index of Pareto-type distributions. This is achieved through the use of a regularised weighted least squares with an exponential regression model for log-spacings of top-order statistics. The asymptotic properties of the proposed estimators are investigated analytically and found to be asymptotically unbiased, asymptotically consistent, and asymptotically normally distributed. Also, the finite sample behaviour of the estimators are studied through a simulation study The proposed estimators were found to yield low bias and mean square errors. In addition, the proposed estimators are illustrated through the estimation of the tail index of the underlying distribution of claims from the insurance industry.

Funder

Carnegie Corporation of New York

Publisher

Hindawi Limited

Subject

General Mathematics

Reference34 articles.

1. Extreme Events in Finance

2. Adjusted Extreme Conditional Quantile Autoregression with Application to Risk Measurement

3. An application of extreme value theory to cryptocurrencies;K. Gkillas;Economics Letters,2018

4. Robust estimation of pareto-type tail index through an exponential regression model;R. Minkah;Communications in Statistics—Theory and Methods,2021

5. Tail index estimation of the generalised pareto distribution using a pivot from a transformed pareto distribution;R. Minkah;Science and Development Journal,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3