Multi-USV System Cooperative Underwater Target Search Based on Reinforcement Learning and Probability Map

Author:

Liu Yuan1,Peng Yan1,Wang Min1ORCID,Xie Jiajia1,Zhou Rui1

Affiliation:

1. School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China

Abstract

Unmanned surface vehicle (USV) is a robotic system with autonomous planning, driving, and navigation capabilities. With the continuous development of applications, the missions faced by USV are becoming more and more complex, so it is difficult for a single USV to meet the mission requirements. Compared with a single USV, a multi-USV system has some outstanding advantages such as fewer perceptual constraints, larger operation ranges, and stronger operation capability. In the search mission about multiple stationary underwater targets by a multi-USV system in the environment with obstacles, we propose a novel cooperative search algorithm (CSBDRL) based on reinforcement learning (RL) method and probability map method. CSBDRL is composed of the environmental sense module and policy module, which are organized by the “divide and conquer” policy-based architecture. The environmental sense module focuses on providing environmental sense values by using the probability map method. The policy module focuses on learning the optimal policy by using RL method. In CSBDRL, the mission environment is modeled and the corresponding reward function is designed to effectively explore the environment and learning policies. We test CSBDRL in the simulation environment and compare it with other methods. The results prove that compared with other methods, CSBDRL makes the multi-USV system have a higher search efficiency, which can ensure targets are found more quickly and accurately while ensuring the USV avoids obstacles in time during the mission.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3