Diagnosis of Thyroid Nodules Based on Image Enhancement and Deep Neural Networks

Author:

Ma Xuesi1ORCID,Zhang Lina2ORCID

Affiliation:

1. School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo 454000, Henan, China

2. School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo 454000, Henan, China

Abstract

The diagnosis of thyroid nodules at an early stage is a challenging task. Manual diagnosis of thyroid nodules is labor-intensive and time-consuming. Meanwhile, due to the difference of instruments and technical personnel, the original thyroid nodule ultrasound images collected are very different. In order to make better use of ultrasound image information of thyroid nodules, some image processing methods are indispensable. In this paper, we developed a method for automatic thyroid nodule classification based on image enhancement and deep neural networks. The selected image enhancement method is histogram equalization, and the neural networks have four-layer network nodes in our experiments. The dataset in this paper consists of thyroid nodule images of 508 patients. The data are divided into 80% training and 20% validation sets. A comparison result demonstrates that our method can achieve a better performance than other normal machine learning methods. The experimental results show that our method has achieved 0.901961 accuracy, 0.894737 precision, 1 recall, and 0.944444 F1-score. At the same time, we also considered the influence of network structure, activation function of network nodes, number of training iterations, and other factors on the classification results. The experimental results show that the optimal network structure is 2500-40-2-1, the optimal activation function is logistic function, and the best number of training iterations is 500.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3