A hybrid thyroid tumor type classification system using feature fusion, multilayer perceptron and bonobo optimization1

Author:

Shankarlal B.1,Dhivya S.2,Rajesh K.3,Ashok S.4

Affiliation:

1. Department of Electrical and Computer Engineering, Perunthalaivar Kamarajar Institute of Engineering and Technology, Karaikal, India

2. Department of Electrical and Computer Engineering, Sri Manakula Vinayagar Engineering College, Puducherry, India

3. Department of Electrical and Computer Engineering, SSM Institute of Engineering and Technology, Kuttathupatti, Dindigul, India

4. Department of Electrical and Computer Engineering, Vel Tech Multi Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Avadi, Chennai, India

Abstract

BACKGROUND: Thyroid tumor is considered to be a very rare form of cancer. But recent researches and surveys highlight the fact that it is becoming prevalent these days because of various factors. OBJECTIVES: This paper proposes a novel hybrid classification system that is able to identify and classify the above said four different types of thyroid tumors using high end artificial intelligence techniques. The input data set is obtained from Digital Database of Thyroid Ultrasound Images through Kaggle repository and augmented for achieving a better classification performance using data warping mechanisms like flipping, rotation, cropping, scaling, and shifting. METHODS: The input data after augmentation goes through preprocessing with the help of bilateral filter and is contrast enhanced using dynamic histogram equalization. The ultrasound images are then segmented using SegNet algorithm of convolutional neural network. The features needed for thyroid tumor classification are obtained from two different algorithms called CapsuleNet and EfficientNetB2 and both the features are fused together. This process of feature fusion is carried out to heighten the accuracy of classification. RESULTS: A Multilayer Perceptron Classifier is used for classification and Bonobo optimizer is employed for optimizing the results produced. The classification performance of the proposed model is weighted using metrics like accuracy, sensitivity, specificity, F1-score, and Matthew’s correlation coefficient. CONCLUSION: It can be observed from the results that the proposed multilayer perceptron based thyroid tumor type classification system works in an efficient manner than the existing classifiers like CANFES, Spatial Fuzzy C means, Deep Belief Networks, Thynet and Generative adversarial network and Long Short-Term memory.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3