Modified t-Distribution Stochastic Neighbor Embedding Using Augmented Kernel Mahalanobis-Distance for Dynamic Multimode Chemical Process Monitoring

Author:

Gu Haoyu1ORCID,Wang Li1ORCID

Affiliation:

1. School of Electrical and Electronic Engineering, Shanghai Institute of Technology, Shanghai 201418, China

Abstract

The traditional data-driven process monitoring methods may not be applicable for the system which has dynamic and multimode characteristics. In this paper, a novel scheme named modified t-distribution stochastic neighbor embedding using augmented Mahalanobis-distance for dynamic multimode chemical process monitoring (AKMD-t-SNE) is proposed to realize dynamic multimodal process monitoring. First, the augmented matrix strategy is utilized to ensure the sample contains the autocorrelation of the process. Moreover, AKMD-t-SNE method eliminates the scale and spatial distribution differences among multiple modes by calculating the kernel Mahalanobis distance between the samples to establish the global model. The features extracted via the proposed method are obviously non-Gaussian, and there will be a deviation in the construction of traditional statistics. Then, the support vector data description (SVDD) method is used to construct statistics to deal with this problem. In addition, a hybrid correlation coefficient method (HCC) is proposed to achieve fault isolation and improve the accuracy of isolation results. The advantages of the proposed scheme are illustrated by a numerical case and the Multimode Tennessee Eastman Process (MTEP) benchmark.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3