Affiliation:
1. School of Electrical and Electronic Engineering, Shanghai Institute of Technology, Shanghai 201418, China
Abstract
The traditional data-driven process monitoring methods may not be applicable for the system which has dynamic and multimode characteristics. In this paper, a novel scheme named modified t-distribution stochastic neighbor embedding using augmented Mahalanobis-distance for dynamic multimode chemical process monitoring (AKMD-t-SNE) is proposed to realize dynamic multimodal process monitoring. First, the augmented matrix strategy is utilized to ensure the sample contains the autocorrelation of the process. Moreover, AKMD-t-SNE method eliminates the scale and spatial distribution differences among multiple modes by calculating the kernel Mahalanobis distance between the samples to establish the global model. The features extracted via the proposed method are obviously non-Gaussian, and there will be a deviation in the construction of traditional statistics. Then, the support vector data description (SVDD) method is used to construct statistics to deal with this problem. In addition, a hybrid correlation coefficient method (HCC) is proposed to achieve fault isolation and improve the accuracy of isolation results. The advantages of the proposed scheme are illustrated by a numerical case and the Multimode Tennessee Eastman Process (MTEP) benchmark.
Funder
National Natural Science Foundation of China
Subject
General Chemical Engineering