Intention-Aware Autonomous Driving Decision-Making in an Uncontrolled Intersection

Author:

Song Weilong1,Xiong Guangming1,Chen Huiyan1

Affiliation:

1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China

Abstract

Autonomous vehicles need to perform social accepted behaviors in complex urban scenarios including human-driven vehicles with uncertain intentions. This leads to many difficult decision-making problems, such as deciding a lane change maneuver and generating policies to pass through intersections. In this paper, we propose an intention-aware decision-making algorithm to solve this challenging problem in an uncontrolled intersection scenario. In order to consider uncertain intentions, we first develop a continuous hidden Markov model to predict both the high-level motion intention (e.g., turn right, turn left, and go straight) and the low level interaction intentions (e.g., yield status for related vehicles). Then a partially observable Markov decision process (POMDP) is built to model the general decision-making framework. Due to the difficulty in solving POMDP, we use proper assumptions and approximations to simplify this problem. A human-like policy generation mechanism is used to generate the possible candidates. Human-driven vehicles’ future motion model is proposed to be applied in state transition process and the intention is updated during each prediction time step. The reward function, which considers the driving safety, traffic laws, time efficiency, and so forth, is designed to calculate the optimal policy. Finally, our method is evaluated in simulation with PreScan software and a driving simulator. The experiments show that our method could lead autonomous vehicle to pass through uncontrolled intersections safely and efficiently.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3