Multiscale Feature Fusion Attention Lightweight Facial Expression Recognition

Author:

Ni Jinyuan1ORCID,Zhang Xinyue2ORCID,Zhang Jianxun1ORCID

Affiliation:

1. College of Computer Science and Engineering, Chongqing University of Technology, 400054, China

2. Sydney Smart Technology College, Northeastern University, 066004, China

Abstract

Facial expression recognition based on residual networks is important for technologies related to space human-robot interaction and collaboration but suffers from low accuracy and slow computation in complex network structures. To solve these problems, this paper proposes a multiscale feature fusion attention lightweight wide residual network. The network first uses an improved random erasing method to preprocess facial expression images, which improves the generalizability of the model. The use of a modified depthwise separable convolution in the feature extraction network reduces the computational effort associated with the network parameters and enhances the characterization of the extracted features through a channel shuffle operation. Then, an improved bottleneck block is used to reduce the dimensionality of the upper layer network feature map to further reduce the number of network parameters while enhancing the network feature extraction capability. Finally, an optimized multiscale feature lightweight attention mechanism module is embedded to further improve the feature extractability of the network for human facial expressions. The experimental results show that the accuracy of the model is 73.21%, 98.72%, and 95.21% on FER2013, CK+ and JAFFE, respectively, with a covariance of 10.14 M. Compared with other networks, the model proposed in this paper has faster computing speed and better accuracy at the same time.

Funder

Chongqing Postgraduate Research and Innovation Project

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Facial Expression Recognition Based on Dual Scale Hybrid Attention Mechanism;2023 5th International Conference on Control and Robotics (ICCR);2023-11-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3