Affiliation:
1. School of Mechanics and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
Abstract
This paper mainly aims at revealing the nature of the galloping oscillation of iced catenary system under cross winds. The aerodynamic force on the iced catenary system is assumed to be quasi-steady, and then the quasi-steady aerodynamic lift and drag coefficients are completed in FLUENT. By fitting the discrete simulation data, the expression of the vertical aerodynamic force is further obtained. According to the Den Hartog vertical galloping mechanism, the stability of iced catenary is discussed and the initial icing angle corresponding to the critical stability is obtained. On this basis, the dynamic model of the simple iced catenary system under cross winds is established. The partial differential vibration equation of the system is converted into the ordinary differential equation by the Galerkin method and then numerically solved. The condition of the unstable catenary motion in simulation is in agreement with that from theoretical stability analysis. In addition, the effects of structural damping, initial icing angle, and wind velocity on the system responses are investigated.
Funder
National Natural Science Foundation of China
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献