The Application of Virtual Reality Technology on Intelligent Traffic Construction and Decision Support in Smart Cities

Author:

Yan Gongxing1,Chen Yanping2ORCID

Affiliation:

1. Center for Mechanics and Materials Science, Chongqing Vocational Institute of Engineering, Chongqing 402260, China

2. School of Management, Wuhan Donghu University, Wuhan 430000, China

Abstract

The core of smart city is to build intelligent transportation system.. An intelligent transportation system can analyze the traffic data with time and space characteristics in the city and acquire rich and valuable knowledge, and it is of great significance to realize intelligent traffic scheduling and urban planning. This article specifically introduces the extensive application of urban transportation infrastructure data in the construction and development of smart cities. This article first explains the related concepts of big data and intelligent transportation systems and uses big data to illustrate the operation of intelligent transportation systems in the construction of smart cities. Based on the machine learning and deep learning method, this paper is aimed at the passenger flow and traffic flow in the smart city transportation system. This paper deeply excavates the time, space, and other hidden features. In this paper, the traffic volume of the random sections in the city is predicted by using the graph convolutional neural network (GCNN) model, and the data are compared with the other five models (VAR, FNN, GCGRU, STGCN, and DGCNN). The experimental results show that compared with the other 4 models, the GCNN model has an increase of 8% to 10% accuracy and 15% fault tolerance. In forecasting morning and evening peak traffic flow, the accuracy of the GCNN model is higher than that of other models, and its trend is basically consistent with the actual traffic volume, the predicted results can reflect the actual traffic flow data well. Aimed at the application of intelligent transportation in an intelligent city, this paper proposes a machine learning prediction model based on big data, and this is of great significance for studying the mechanical learning of such problems. Therefore, the research of this paper has a good implementation prospect and academic value.

Funder

Chongqing Municipal Education Commission

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3