Daily Prediction Model of Photovoltaic Power Generation Using a Hybrid Architecture of Recurrent Neural Networks and Shallow Neural Networks

Author:

Castillo-Rojas Wilson1ORCID,Bekios-Calfa Juan2ORCID,Hernández César1ORCID

Affiliation:

1. Department of Informatics Engineering and Computer Science, University of Atacama, Av. Copayapu 485, 1530000, Chile

2. School of Engineering, Catholic University of the North, Larrondo 1281, 1781421, Chile

Abstract

In recent years, photovoltaic energy has become one of the most implemented electricity generation options to help reduce environmental pollution suffered by the planet. Accuracy in this photovoltaic energy forecasting is essential to increase the amount of renewable energy that can be introduced to existing electrical grid systems. The objective of this work is based on developing various computational models capable of making short-term forecasting about the generation of photovoltaic energy that is generated in a solar plant. For the implementation of these models, a hybrid architecture based on recurrent neural networks (RNN) with long short-term memory (LSTM) or gated recurrent units (GRU) structure, combined with shallow artificial neural networks (ANN) with multilayer perceptron (MLP) structure, is established. RNN models have a particular configuration that makes them efficient for processing ordered data in time series. The results of this work have been obtained through controlled experiments with different configurations of its hyperparameters for hybrid RNN-ANN models. From these, the three models with the best performance are selected, and after a comparative analysis between them, the forecasting of photovoltaic energy production for the next few hours can be determined with a determination coefficient of 0.97 and root mean square error (RMSE) of 0.17. It is concluded that the proposed and implemented models are functional and capable of predicting with a high level of accuracy the photovoltaic energy production of the solar plant, based on historical data on photovoltaic energy production.

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

Reference44 articles.

1. Ministry of the Environment, Chile;Chile’s third national communication before the United Nations framework convention on climate change,2016

2. Trends 2018 in photovoltaic applications;G. Masson;International Energy Agency,2018

3. Solar power generation forecasting using ensemble approach based on deep learning and statistical methods

4. Integration Challenges and Solutions for Renewable Energy Sources, Electric Vehicles and Demand-Side Initiatives in Smart Grids

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3