Optimization of the Spatiotemporal Parameters in a Dynamical Marine Ecosystem Model Based on the Adjoint Assimilation

Author:

Li Xiaoyan12,Wang Chunhui13,Fan Wei4,Lv Xianqing1

Affiliation:

1. Laboratory of Physical Oceanography, Ocean University of China, Qingdao 266100, China

2. Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China

3. Key Laboratory of Marine Spill Oil Identification and Damage Assessment Technology, The organaization of North China Sea Monitoring Center, Qingdao 266033, China

4. Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China

Abstract

By utilizing spatiotemporal biological parameterizations, the adjoint variational method was applied to a 3D marine ecosystem dynamical model. The results of twin experiments demonstrated that the mean absolute error (MAE) of phytoplankton in the surface layer and the reduced cost function (RCF) could be used to evaluate both the simulation results and parameter estimation. Spatiotemporal variation of key parameters (KPs) was optimized in real experiments. The RCF and MAE in each assimilation period (72 periods per year) decreased obviously. The spatially varying KP (KPS), temporally varying KP (KPT), and constant KP (KPC) were obtained by averaging KPs of spatiotemporal variation. Another type of spatiotemporal KP (KPST) was represented by KPS, KPT, and KPC. The correlation analysis of KPs, either KPS or KPT, accorded with the real ecological mechanism. Running the model with KPS, KPT, KPC, and KPST, respectively, we found that MAE was the minimum when KPs were spatiotemporal variation (KPST), while MAE reached its maximum when KPs were constant (KPC). Using spatiotemporal KPs could improve simulation precision compared with only using spatially varying KPs, temporally varying KPs, or constant KPs (these forms are the results in a previous study). KPST, a representation of spatiotemporal variation, reduces the variable number in calculation.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3