Prediction of tide level based on variable weight combination of LightGBM and CNN-BiGRU model

Author:

Su Ye,Jiang Xuchu

Abstract

AbstractAccurate tide level prediction is crucial to human activities in coastal areas. Many practical applications show that compared with traditional harmonic analysis, long short-term memory (LSTM), gated recurrent units (GRUs) and other neural networks, along with ensemble learning models, such as light gradient boosting machine (LightGBM) and eXtreme gradient boosting (XGBoost), can achieve extremely high prediction accuracy in relatively stationary time series. Therefore, this paper proposes a variable weight combination model based on LightGBM and CNN-BiGRU with relevant research. It uses the variable weight combination method to weight and synthesize the prediction results of the two base models so that the combination model has a stronger ability to capture time series features and fits the data well. The experimental results show that in contrast to the base model LightGBM, the RMSE value and MAE value of the combination model are reduced by 43.2% and 44.7%, respectively; in contrast to the base model CNN-BiGRU, the RMSE value and MAE value of the combination model are reduced by 35.3% and 39.1%, respectively. This means that the variable weight combination model can greatly improve the accuracy of tide level prediction. In addition, we use tidal data from different geographical environments to further verify the good universality of the model. This study provides a new idea and method for tide prediction.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference37 articles.

1. Darwin, G. H. & Turner, H. H. I. On the correction to the equilibrium theory of tides for the continents [J]. Proc. R. Soc. Lond. 40(242–245), 303–315 (1886).

2. Doodson, A. T. The harmonic development of the tide-generating potential [J]. Proc. R. Soc. Lond. Ser. A 100(704), 305–329 (1921).

3. Doodson, A. T. Perturbations of harmonic tidal constants [J]. Proc. R. Soc. Lond. Ser. A 106(739), 513–526 (1924).

4. Doodson, A. T. V. I. The analysis of tidal observations [J]. Philos. Trans. R. Soc. Lond. Ser. A 227(647–658), 223–279 (1928).

5. Kukulka, T., & Jay, D. A. Impacts of Columbia River discharge on salmonid habitat: 1. A nonstationary fluvial tide model [J]. J. Geophys. Res. Oceans 108(C9) (2003).

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3