Electronic Communication Fault Signal Recognition Based on Data Mining Algorithm

Author:

Luo Jun1ORCID

Affiliation:

1. Guangzhou College of Technology and Business, Guangzhou, Guangdong 510850, China

Abstract

In order to solve the technical problem of fault signal recognition in the field of communication, this paper proposes an electronic communication fault signal recognition method based on data mining algorithm. Firstly, the K-means clustering algorithm is used to determine the cluster number k according to some attributes or class characteristics of the communication class samples, and the communication sample types are classified into a certain class so that the communication sample data in the cluster can be closely distributed and the data within a certain class range can be calculated by Euclidean distance formula. Then, this paper clusters the data. In the clustering data, BP neural network model is used to train and calculate the obtained clustering data again, which can map and deal with the complex nonlinear relationship between the fault information data of different clustering categories. The results show that the final error accuracy can be raised to about 20% by using the method in this paper. Conclusion. The algorithm designed in this paper can quickly predict the factors affecting the communication and find the communication fault information.

Funder

Guangdong Undergraduate University Teaching Quality and Teaching Reform Project

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3