Conceptual Implementation of Artificial Intelligent based E-Mobility Controller in smart city Environment

Author:

Jayakumar Jayaraj1ORCID,Nagaraj Balakrishnan2ORCID,Chacko Shanty1,Ajay P.3

Affiliation:

1. Department of Electrical and Electronics Engineering, Karunya University, Coimbatore 641114, India

2. Department of Electronics and Communication Engineering, Rathinam Technical Campus, India

3. Department of Electronics and Communication Engineering, Anna University, India

Abstract

Testing and implementation of integrated and intelligent transport systems (IITS) of an electrical vehicle need many high-performance and high-precision subsystems. The existing systems confine themselves with limited features and have driving range anxiety, charging and discharging time issues, and inter- and intravehicle communication problems. The above issues are the critical barriers to the penetration of EVs with a smart grid. This paper proposes the concepts which consist of connected vehicles that exploit vehicular ad hoc network (VANET) communication, embedded system integrated with sensors which acquire the static and dynamic parameter of the electrical vehicle, and cloud integration and dig data analytics tools. Vehicle control information is generated based on machine learning-based control systems. This paper also focuses on improving the overall performance (discharge time and cycle life) of a lithium ion battery, increasing the range of the electric vehicle, enhancing the safety of the battery that acquires the static and dynamic parameter and driving pattern of the electrical vehicle, establishing vehicular ad hoc network (VANET) communication, and handling and analyzing the acquired data with the help of various artificial big data analytics techniques.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 176 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3