Effect of Adaptive Cruise Control on Mixed Traffic Flow: A Comparison of Constant Time Gap Policy with Variable Time Gap Policy

Author:

Dong Jiakuan1ORCID,Wang Jiangfeng1ORCID,Chen Lei1,Gao Zhijun1,Luo Dongyu1

Affiliation:

1. Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Ministry of Transport, Beijing Jiaotong University, Beijing 100044, China

Abstract

With the emerging application of low-level driving automation technology, heterogeneous traffic flow mixed with human-driven vehicles and low-level autonomous vehicles is dawning. In this context, it is imperative to investigate its effect on mixed traffic flow. As a key component for adaptive cruise control (ACC) which is a practical low-level application of driving automation, the time gap policy determines the dynamic of ACC-equipped vehicles and plays a crucial role in traffic flow stability and efficiency. There are two main time gap policies used for ACC at present, namely, constant time gap (CTG) policy and variable time gap (VTG) policy. In this study, we carried out a detailed comparison between these time gap policies to investigate their potential effect on mixed traffic flow, where the analytical- and simulation-based approaches are both considered. Analytical results show that VTG policy is superior to CTG policy in stabilizing the mixed traffic flow. In addition, numerical simulations are also conducted and simulation results further support the analytical results. As for throughput, there is no difference between CTG policy and VTG policy in analytical progress when the same time gap is set at the equilibrium. However, simulation results based on an on-ramp scenario show that the throughput of mixed traffic flow with VTG policy is slightly higher than that of CTG policy. Meanwhile, the scatter of mixed traffic flow with VTG policy in the flow-density diagram gradually clusters in the middle range of density (i.e., 20–40 veh/km) with the increase of the penetration rates of ACC vehicles, where the traffic flow operates more efficiently. These results indicate that VTG policy is better than CTG policy when designing controllers for ACC in the context of traffic flow operation and control.

Funder

National Key R&D Program of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mitigating traffic oscillation through control of connected automated vehicles: A cellular automata simulation;Expert Systems with Applications;2024-01

2. Damping Periodic Stop-and-go Waves in Connected Vehicle Environments;2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC);2023-09-24

3. Distributed Control of a Vehicular Platoon Using Event-Triggered Communication Strategy Based on State Estimation;Journal of Transportation Engineering, Part A: Systems;2023-09

4. Cooperative Damping of Lane-change-induced Disturbances via Local Density Reduction;2023 8th International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS);2023-06-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3