Affiliation:
1. Faculty of Mechanical Engineering, Technion–Israel Institute of Technology, 32000 Haifa, Israel
Abstract
Phase segregation of membranal components, such as proteins, lipids, and cholesterols, leads to the formation of aggregates or domains that are rich in specific constituents. This process is important in the interaction of the cell with its surroundings and in determining the cell’s behavior and fate. Motivated by published experiments on curvature-modulated phase separation in lipid membranes, we formulate a mathematical model aiming at studying the spatial ordering of composition in a two-component biomembrane that is subjected to a prescribed (imposed) geometry. Based on this model, we identified key nondimensional quantities that govern the biomembrane response and performed numerical simulations to quantitatively explore their influence. We reproduce published experimental observations and extend them to surfaces with geometric features (imposed geometry) and lipid phases beyond those used in the experiments. In addition, we demonstrate the possibility for curvature-modulated phase separation above the critical temperature and propose a systematic procedure to determine which mechanism, the difference in bending stiffness or difference in spontaneous curvatures of the two phases, dominates the coupling between shape and composition.
Subject
Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modelling and Simulation,General Medicine
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献