Cell Mechanics: Mechanical Response, Cell Adhesion, and Molecular Deformation

Author:

Zhu Cheng12,Bao Gang12,Wang Ning12

Affiliation:

1. Woodruff School of Mechanical Engineering and 1,2Joint Georgia Tech/Emory Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0363;

2. Physiology Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts 02115;

Abstract

▪ Abstract  As the basic unit of life, the cell is a biologically complex system, the understanding of which requires a combination of various approaches including biomechanics. With recent progress in cell and molecular biology, the field of cell mechanics has grown rapidly over the last few years. This review synthesizes some of these recent developments to foster new concepts and approaches, and it emphasizes molecular-level understanding. The focuses are on the common themes and interconnections in three related areas: (a) the responses of cells to mechanical forces, (b) the mechanics and kinetics of cell adhesion, and (c) the deformation of biomolecules. Specific examples are also given to illustrate the quantitative modeling used in analyzing biological processes and physiological functions.

Publisher

Annual Reviews

Subject

Biomedical Engineering,Medicine (miscellaneous)

Cited by 347 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3