A Method for Improving Imputation and Prediction Accuracy of Highly Seasonal Univariate Data with Large Periods of Missingness

Author:

Chaudhry Aizaz1,Li Wei1ORCID,Basri Amir1,Patenaude François1

Affiliation:

1. Communications Research Centre Canada, Ottawa, ON K2H 8S2, Canada

Abstract

Imputation of missing data in datasets with high seasonality plays an important role in data analysis and prediction. Failure to appropriately account for missing data may lead to erroneous findings, false conclusions, and inaccurate predictions. The essence of a good imputation method is its missingness-recovery-ability, i.e., the ability to deal with large periods of missing data in the dataset and the ability to extract the right characteristics (e.g., seasonality pattern) buried under the dataset to be analyzed. Univariate imputation is usually incapable of providing a reasonable imputation for a variable when periods of missing values are large. On the other hand, the default multivariate imputation approach cannot provide an accurate imputation for a variable when missing values of other correlated variables used for imputation occur at exactly the same time intervals. To deal with these drawbacks and to provide feasible imputations in such scenarios, we propose a novel method that converts a single variable into a multivariate form by exploiting the high seasonality and random missingness of this variable. After this conversion, multivariate imputation can then be applied. We then test the proposed method on an LTE spectrum dataset for imputing a single variable, such as the average cell throughput. We compare the performance of our proposed method with Kalman filtering and default method for multivariate imputation. The performance evaluation results clearly show that the proposed method significantly outperforms Kalman filtering and default method in terms of imputation and prediction accuracy.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3