Affiliation:
1. Shandong University of Science and Technology, Shandong Provincial Key Laboratory of Civil Engineering Disaster Prevention and Mitigation, Qingdao 266510, China
Abstract
This paper describes an experimental study on the pure bending mechanical behavior of a pressurized pipe and adoption of a measured moment-curvature relationship under different working conditions in numerical simulations for transient pipe-whip prediction. To describe the effects of pipe contents and internal pressure, the governing equations were derived based on large deformation theory. Bending moment and axial force were uncoupled in the constitutive equation, and an experiment-based relationship between moment and curvature was adopted. The numerical simulations show that the present model can simulate the mechanical processes of elasticity, plastic hardening, and softening behavior in the initial, middle, and late stages of whole response, respectively. In addition, it was shown that kinks may occur at several positions along an empty cantilever pipe due to the collapse of sections under intense dynamic loading. However, this behavior did not occur for the full pressurized pipe, indicating that the contents and internal pressure are able to effectively impede the partial flattening of the pipe section, improving its critical curvature and changing its plastic dynamic response behavior.
Funder
National Natural Science Foundation of China
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献