Affiliation:
1. School of Mechanical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China
Abstract
The dynamics of cross-flow tubes were studied in consideration of initial axial load and distributed impacting constraints, modeled as cubic and trilinear spring constraints. The tubes were modeled as Euler–Bernoulli beams and supported at both ends, including the simply supported tube and clamped-clamped tube. The analytical model involves a time-delayed displacement term induced by the cross flow based on the quasi-steady theory. For simplicity, a single flexible supported beam in a rigid square array of cylinders was studied by using the damping-controlled mechanism. The mean extension of the tube was considered, and thus, it added another nonlinear term in the equation of motion. Results show that the tube loses stability by buckling and fluttering at various initial pressure loads and cross-flow velocities. An increase was observed for critical velocities and initial pressure loads. Chaotic oscillations were observed for the trilinear spring model. The distribution of the impacting forces was also calculated. Some of the fresh results obtained in the impact system are expected to be helpful in understanding and controlling the dynamic responses of fluid-conveying pipes.
Funder
National Natural Science Foundation of China
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献