The In Vitro Adsorption Ability of Lactobacillus acidophilus NCFM to Benzo(a)pyrene in PM2.5

Author:

Fu Lili1ORCID,Ning Yan1ORCID,Zhao Hongfei12ORCID,Fan Junfeng12ORCID,Zhang Bolin12ORCID

Affiliation:

1. College of Biological Science & Biotechnology, Beijing Forestry University, Beijing 100083, China

2. Beijing Key Laboratory of Forest Food Processing and Safety, Beijing 100083, China

Abstract

The objective of this work was to explore the ability of lactic acid bacteria strains to bind benzo(a)pyrene (B(a)P) existing in PM2.5. In this study, we examined the ability of Lactobacillus acidophilus NCFM to bind B(a)P in the simulated PM2.5 environment. Among the tested 5 strains, Lactobacillus acidophilus NCFM exhibited the best capacity to bind B(a)P, and its B(a)P binding percentage was 60.00%. Simulations of organic and inorganic systems which represent PM2.5 indicated that B(a)P could be absorbed by strain L. acidophilus NCFM. For the inorganic system of pH 5, L. acidophilus NCFM bound 92.74% B(a)P with a cell concentration of 1 × 1010 cfu/mL at 37°C for 8 hr. Regarding the organic system with pH 6, 73.00% B(a)P was bound by strain L. acidophilus NCFM after this bacterium was incubated at 37°C for 10 min. A quick B(a)P binding by this probiotic bacterium took place in the organic system. The removal of B(a)P from PM2.5 was significantly related to incubation time, cultivation temperature, pH, and cell concentration. Thus, our finding shows that long-term consumption of L. acidophilus NCFM is beneficial for the reduction of B(a)P towards the population who are exposed to PM2.5, although the ability of this bacterium to adsorb B(a)P is partly affected by the differences in the origin of PM2.5.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Pharmacology,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3