Hybrid Mutation Fruit Fly Optimization Algorithm for Solving the Inverse Kinematics of a Redundant Robot Manipulator

Author:

Shi Jianping12ORCID,Mao Yuting2,Li Peishen2,Liu Guoping2,Liu Peng13ORCID,Yang Xianyong2,Wang Dahai2

Affiliation:

1. School of Electronic & Communication Engineering, Guiyang University, Guiyang 550005, China

2. School of Mechanical & Electrical Engineering, Nanchang University, Nanchang 330031, China

3. School of Gems and Materials Technology, Hebei GEO University, Shijiazhuang 050031, China

Abstract

The inverse kinematics of redundant manipulators is one of the most important and complicated problems in robotics. Simultaneously, it is also the basis for motion control, trajectory planning, and dynamics analysis of redundant manipulators. Taking the minimum pose error of the end-effector as the optimization objective, a fitness function was constructed. Thus, the inverse kinematics problem of the redundant manipulator can be transformed into an equivalent optimization problem, and it can be solved using a swarm intelligence optimization algorithm. Therefore, an improved fruit fly optimization algorithm, namely, the hybrid mutation fruit fly optimization algorithm (HMFOA), was presented in this work for solving the inverse kinematics of a redundant robot manipulator. An olfactory search based on multiple mutation strategies and a visual search based on the dynamic real-time updates were adopted in HMFOA. The former has a good balance between exploration and exploitation, which can effectively solve the premature convergence problem of the fruit fly optimization algorithm (FOA). The latter makes full use of the successful search experience of each fruit fly and can improve the convergence speed of the algorithm. The feasibility and effectiveness of HMFOA were verified by using 8 benchmark functions. Finally, the HMFOA was tested on a 7-degree-of-freedom (7-DOF) manipulator. Then the results were compared with other algorithms such as FOA, LGMS-FOA, AE-LGMS-FOA, IFOA, and SFOA. The pose error of end-effector corresponding to the optimal inverse solution of HMFOA is 1014 mm, while the pose errors obtained by FOA, LGMS-FOA, AE-LGMS-FOA, IFOA, and SFOA are 102 mm, 101 mm, 102 mm, 102 mm, and 102 mm, respectively. The experimental results show that HMFOA can be used to solve the inverse kinematics problem of redundant manipulators effectively.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3