Absorption and Metabolism of Urolithin A and Ellagic Acid in Mice and Their Cytotoxicity in Human Colorectal Cancer Cells

Author:

Lin I-Chen1,Wu Jin-Yi2,Fang Chuan-Yin1,Wang Shou-Chie3,Liu Yi-Wen2ORCID,Ho Shang-Tse4ORCID

Affiliation:

1. Department of Colon-Rectal Surgery, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 600, Taiwan

2. Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi 600, Taiwan

3. Division of Nephrology, Department of Internal Medicine, Kuang Tien General Hospital, Taichung 437, Taiwan

4. Department of Wood Based Materials and Design, College of Agriculture, National Chiayi University, Chiayi 600, Taiwan

Abstract

Background. Ellagic acid is a natural polyphenol compound found in pomegranates, walnuts, and many berries. It is not easily absorbed, but it could be metabolized to urolithins by the gut microbiota. Urolithin A, one of the ellagic acid metabolites, has been proved to prolong the lifespan of C. elegans and increases muscle function of mice. The purpose of this current study was to analyze the absorption and metabolites of urolithin A and ellagic acid in mice and the anticancer effects of urolithin A, urolithin B, and ellagic acid in colorectal cancer cells. Methods. Urolithin A and urolithin B were synthesized and analyzed by HPLC and NMR. A pharmacokinetic study of urolithin A was performed in mice by analyzing urolithin A and its metabolites in urines. Absorption and biotransformation of ellagic acid were also studied in mice by analyzing the plasma, liver, and feces. The cytotoxicity of urolithin A, urolithin B, and ellagic acid was assayed in SW480, SW620, HCT 116, and HT-29 cells. Results. Urolithin A and urolithin B were synthesized and purified to reach 98.1% and 99% purity, respectively, and the structures were identified by NMR. In urolithin A intake analysis, urolithin A was only detectable at 3 h, not at 6–24 h; it suggested that urolithin A was rapidly metabolized to some unknown metabolites. Using UPLC-MS/MS analysis, the metabolites might be urolithin A 3-O-glucuronide, urolithin A 3-sulfate, and urolithin A-sulfate glucuronide. After feeding mice with ellagic acid for consecutive 14 days, ellagic acid contents could be detected in the fecal samples, but not in plasma and liver, and urolithin A was not detected in all samples. It suggests that ellagic acid is not easily absorbed and that the biotransformation of ellagic acid to urolithin A by intestinal flora might be very low. From the cytotoxicity assay, it was found that there was anticancer effect in urolithin A and urolithin B but not in ellagic acid. In contrast, ellagic acid promoted the proliferation of SW480 and SW620 cells.

Funder

Ditmanson Medical Foundation Chia-Yi Christian Hospital

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3