Intelligent Optimization of Tower Crane Location and Layout Based on Firefly Algorithm

Author:

Liu Cong1ORCID,Zhang Fangqing2,Han Xiaojian1,Ye Hongyu3,Shi Zanxi1,Zhang Jie1,Wang Tiankuo1,She Jianjun1,Zhang Tianyue1

Affiliation:

1. College of Civil Engineering, Nanjing Tech University, Nanjing 211816, China

2. Urban Planning and Design Institute, China Design Group Co., Ltd., Nanjing 210014, China

3. School of Architecture, Southeast University, Nanjing 210096, China

Abstract

The existing tower crane positioning layout mainly depends on the experience of construction personnel, and the best tower crane positioning can be found through a large number of manual data calculation. This manual method is time-consuming and impractical. In view of this, aiming at the current situation that building information modeling (BIM) software can only obtain the relative coordinates of components, this article puts forward the key technology of importing computer-aided design (CAD) graphics into geographic information system (GIS) software to automatically obtain the world coordinate information. By clarifying the transfer relationship between the component material supply point, the component initial positioning point, and the tower crane optional positioning point, as well as the cooperative relationship between each positioning point and the tower crane operation, the tower crane positioning optimization model is formed, and the firefly algorithm is used to automatically calculate and generate the best positioning layout method of the tower crane on the project site. In this study, the vertical transportation and positioning of components are studied, and intelligent construction is formed by integrating information technology. It can further enrich the functions of perception, analysis, decision-making, and optimization; realize the decision-making intelligence of industrial buildings; and achieve the organic unity of engineering construction execution system and decision-making command system.

Funder

Jiangsu Provincial Double-Innovation Doctor Program

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3