A Residual Theorem Approach Applied to Stokes’ Problems with Generally Periodic Boundary Conditions including a Pressure Gradient Term

Author:

Durante Danilo1ORCID,Broglia Riccardo1ORCID

Affiliation:

1. CNR-INM, National Research Council, Institute of Marine Engineering, via di Vallerano 139, 00128 Rome, Italy

Abstract

The differential problem given by a parabolic equation describing the purely viscous flow generated by a constant or an oscillating motion of a boundary is the well-known Stokes’ problem. The one-dimensional equation is generally solved for unbounded or bounded domains; for the latter, either free slip (i.e., zero normal gradient) or no-slip (i.e., zero velocity) conditions are enforced on one boundary. Generally, the analytical strategy to solve these problems is based on finding the solutions of the Laplace-transformed (in time) equation and on inverting these solutions. In the present paper this problem is solved by making use of the residuals theorem; as it will be shown, this strategy allows achieving the solutions of First and Second Stokes’ problems in both infinite and finite depth. The extension to generally periodic boundaries with the presence of a periodic pressure gradient is also presented. This approach allows getting closed form solutions in the time domain in a rather fast and simple way. An ad hoc numerical algorithm, based on a finite difference approximation of the differential equation, has been developed to check the correctness of the analytical solutions.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3