Cyclic Fatigue Resistance of Nickel–Titanium Rotary Instruments after Simulated Clinical Use

Author:

Ubaed Hana R.1ORCID,Bakr Diyar Kh.1ORCID

Affiliation:

1. Conservative Department, Hawler Medical University, Erbil 44000, Iraq

Abstract

Objective. Cyclic fatigue occurred in the curved canal when the instrument freely rotated leading to repeated compressive and tensile stresses. This study aims to evaluate the cyclic fatigue resistance (CFR) of new and used 2Shape and AF F-One rotary instrument systems by using an artificial stainless-steel canal. Methods. A total of 80 rotary nickel–titanium (NiTi) instruments of two systems were used, 2Shape/TS2 and AF F-ONE/F5 (40 in each group). The instruments were subdivided into group A 20 instruments (10 per system) that remain unused, group B 20 instruments (10 per system) instrumented 20 root canals (each file prepared 1 canal for 2 minutes), group C 20 instruments (10 per system) instrumented 40 canals each for 2 minutes (each file prepared 2 canals), group D of 20 instruments (10 per system) prepared 60 canals each for 2 minutes (each file prepared 3 canals). After each canal instrumentation, the instruments were cleaned and sterilized by autoclave. Then, all the instruments underwent cyclic fatigue testing in an artificial stainless steel canal with a 50° canal curvature and a radius of curvature of 5 mm. The time and number of cycles to failure (NCF) were recorded. Data were analyzed using the Welch ANOVA test for intragroup comparison and the pairwise test for multiple comparisons. Results. The unused instruments of the AF F-One rotary system showed statistically higher CFR than clinically used instruments ( P < 0.05 ). 2Shape system was not affected by clinical use ( P > 0.05 ). The mean NCF of AF F-One instruments was significantly higher than the equivalent file group of 2Shape instruments ( P < 0.05 ). Conclusion. A reduction in the CFR for AF F-One instruments after use was observed when compared to the new unused file group. The 2Shape system was not affected by clinical use. AF F-One performed better in terms of NCF.

Publisher

Hindawi Limited

Subject

Biomedical Engineering,Bioengineering,Medicine (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3