Research on the 3D Fine Modeling Method of In-Service Road

Author:

Qi Hui1,Cong Bori2,Liu Rufei3ORCID,Li Xiaoli3,Yan Zongyao4,Li Qingying5,Li Ming3ORCID

Affiliation:

1. Shandong Hi-Speed Group Co., Ltd., Jinan 250013, Shandong, China

2. Shandong Hi-Speed Engineering Consulting Group Co., Ltd., Jinan 250003, Shandong, China

3. College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, Shandong, China

4. Shandong Hi-Speed Construction Management Group Co., Ltd., Jinan 250102, Shandong, China

5. Shandong Hi-Speed Engineering Testing Group Co., Ltd., Jinan 250003, Shandong, China

Abstract

To achieve the digitization of all traffic infrastructure elements and enable three-dimensional digital representation of physical facilities, a multilevel road three-dimensional reverse modeling method is proposed based on road point cloud data obtained by a vehicle laser scanning system. First, based on the distribution characteristics of each target structure in the road scene and the modeling requirements, a levels of detail (LOD) modeling specification is designed, and the required feature data format for each level is defined. Next, the three-dimensional characteristic parameters needed for modeling are extracted from the vehicle point cloud data. Finally, the continuous quadrilateral algorithm is used to reconstruct the road model, the topological structure relationship algorithm is used to reconstruct the intersection model, and the instantiation lofting technology is used to reconstruct the rod-shaped target model, all based on the three-dimensional modeling platform. This approach allows for the rapid reverse reconstruction of three-dimensional road models with different LOD levels. The point cloud data of two sections of urban roads with different slopes and one section of expressways were modeled and compared with the original vehicle-mounted laser point cloud data. The data volume of different level models decreases with decreasing model fineness, and the LOD1 level model has the highest similarity with point cloud data, at approximately 92.17%. The similarity of LOD2 and LOD3 decreases in turn, at 82.91% and 75.25%, respectively. For flat or undulating roads, the overall accuracy of the nearest point distance between different levels of road models and point cloud data is better than 10 cm, significantly higher than that of traditional manual modeling. The results demonstrate that vehicle mobile laser scanning technology provides new modeling data for the rapid realization of three-dimensional reverse reconstruction of large-scale traffic infrastructure. Automatic modeling technology can effectively improve modeling efficiency, reduce data redundancy, and ensure model quality.

Funder

Key Science and Technology Projects in Transportation Industry

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3