A Convolutional Neural Network-Based Model for Supply Chain Financial Risk Early Warning

Author:

Yin Li-Li1ORCID,Qin Yi-Wen2ORCID,Hou Yuan1ORCID,Ren Zhao-Jun1

Affiliation:

1. Beijing Technology and Business University, Beijing, China

2. North Borneo University College, Kota Kinabalu, Sabah, Malaysia

Abstract

At present, there are widespread financing difficulties in China's trade circulation industry. Supply chain finance can provide financing for small- and medium-sized enterprises in China’s trade circulation industry, but it will produce financing risks such as credit risks. It is necessary to analyze the causes of the risks in the supply chain finance of the trade circulation industry and measure these risks by establishing a credit risk assessment system. In this article, a supply chain financial risk early warning index system is established, including 4 first-level indicators and 29 third-level indicators. Then, on the basis of the supply chain financial risk early warning index system, combined with the method of convolution neural network, the supply chain financial risk early warning model of trade circulation industry is constructed, and the evaluation index is measured by the method of principal component analysis. Finally, the relevant data of trade circulation enterprises are selected to make an empirical analysis of the model. The conclusion shows that the supply chain financial risk early warning model and risk control measures established in this article have certain reference value for the commercial circulation industry to carry out supply chain finance. It also provides guidance for trade circulation enterprises to deal with supply chain financial risks effectively.

Funder

Science and Technology Innovation Service Capacity Provincial

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3