Affiliation:
1. School of Mathematics and Computer Science, Zhejiang A&F University, Zhejiang, Hangzhou 311300, China
Abstract
The financial status of an enterprise is related to its healthy and long-term development, and whether the interests of investors and bank loans can be guaranteed. To improve the prediction accuracy of corporate financial risk, this paper proposes a prediction model for corporate financial risk that integrates GRA-TOPSIS and SMOTE-CNN. First, using GRA-TOPSIS to make a comprehensive evaluation of the financial situation of listed companies. Second, the evaluation results are clustered to obtain the scientific level and interval of financial risk, which lays the foundation for the supervised learning of the convolutional neural network. Then, the SMOTE algorithm is introduced to solve the problem of data imbalance of enterprises at all levels, and the focal loss function is used instead of the cross-entropy loss function to further balance the data. Finally, the listed companies in A shares are randomly selected, and experiments were designed to verify the performance of the model built in this paper. The results show that the prediction accuracy of the financial risk prediction model based on GRA-TOPSIS and SMOTE-CNN is 98.57%, which indicates that the model is feasible and has certain reference value.
Funder
Philosophy and Social Science Planning Foundation of Zhejiang
Subject
Computer Science Applications,Software
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献