Effect of Different Dietary Selenium Sources on Growth Performance, Antioxidant Capacity, Gut Microbiota, and Molecular Responses in Pacific White Shrimp Litopenaeus vannamei

Author:

Yu Qiuran1ORCID,Xia Chuyan1ORCID,Han Fenglu1ORCID,Xu Chang1,Rombenso Artur2ORCID,Qin Jian G.3ORCID,Chen Liqiao4ORCID,Li Erchao1ORCID

Affiliation:

1. Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China

2. CSIRO, Agriculture and Food, Aquaculture Program, Bribie Island Research Centre, Bribie Island, QLD, 4507, Australia

3. School of Biological Sciences, Flinders University, Adelaide, SA 5001, Australia

4. School of Life Sciences, East China Normal University, Shanghai 200241, China

Abstract

This study investigated the effect of different dietary selenium (Se) sources on the growth performance, antioxidant capacity, gut microbiota, and molecular responses of the Pacific white shrimp Litopenaeus vannamei. Four Se sources (sodium selenite, L-selenomethionine, selenium yeast, or Se nanoparticles) were added to purified diets to 0.4 mg Se/kg diet for shrimp ( 1.60 ± 0.14 g ). Each treatment was randomly assigned to 3 replicated tanks and 30 shrimp in each tank (500 L). After 8 weeks of breeding, L-selenomethionine and selenium yeast significantly increased weight gain compared with sodium selenite treatment, while sodium selenite significantly decreased the shrimp hepatosomatic index compared with the other groups. The L-selenomethionine significantly increased the superoxide dismutase and glutathione peroxidase activities in the hepatopancreas compared with the shrimp fed sodium selenite and decreased catalase activity and malondialdehyde content compared with other groups. The composition and β-diversity of gut microbiota were markedly changed in each group. The abundances of Rubrobacter and Rubritalea, Winogradskyella and Motilimonas, and Photobacterium in the gut microbiota were specially altered by L-selenomethionine, Se yeast, and Se nanoparticles, respectively. The sodium selenite group showed lower complexity of gut interspecies interactions. RNA-seq analysis showed that “arachidonic acid metabolism”-related genes were significantly enriched in the L-selenomethionine and Se yeast groups; “peroxisome” and “drug metabolism–other enzymes”-related genes were enriched in the Se nanoparticle group. Vibrio, Motilimonas, and Photobacterium were associated with amino acid and lipid metabolism. Pseudoalteromonas, Silicimonas, Roseovarius, and Halomonas inhibited the expression of glutathione peroxidase genes. These results suggested that organic Se, especially selenomethionine, is an effective feed supplement to promote growth and antioxidant capacity, maintain the health of gut microbiota, and promote the utilization of fatty acid and glutathione peroxidase genes in shrimp fed a 0.4 mg Se/kg diet.

Funder

Hainan University

Publisher

Hindawi Limited

Subject

Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3