An Indexing Method to Construct Unbalanced Layers for High-Dimensional Data in Mobile Environments

Author:

Ihm Sun-Young1,Hur Jae-Hee2ORCID,Park Young-Ho2ORCID

Affiliation:

1. Big Data Using Research Center, Sookmyung Women’s University, Cheongpa-ro 47-gil 100, Yongsan-Ku, Seoul 04310, Republic of Korea

2. Department of IT Engineering, Sookmyung Women’s University, Cheongpa-ro 47-gil 100, Yongsan-Ku, Seoul 04310, Republic of Korea

Abstract

A top-k query processing is widely used in many applications and mobile environments. An index is used for efficient query processing and layer-based indexing methods are representative to perform the top-k query processing efficiently. However, the existing methods have a problem of high index building time for multidimensional and large data; thus, it is difficult to use them. In this paper, we proposed a new concept of constructing layer-based index, which is called unbalanced layer (UB-Layer). The existing methods construct a layer as a balanced layer with outermost data and wrap the rest of the input data. However, UB-Layer constructs a layer as an unbalanced layer that does not wrap the rest of the data. To construct UB-Layer, we fist divide the dimension of the input data into divided-dimensional data and compute the convex hull in each divided-dimensional data. And then, we combine divided-convex hull to build UB-Layer. We also propose UB-SelectAttribute algorithm for dividing the dimension with major attributes. We demonstrate the superiority of the proposed methods by the performance experiments.

Funder

Institute for Information & Communications Technology Promotion

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3