Machine learning-based high throughput screening for nitrogen fixation on boron-doped single atom catalysts
Author:
Affiliation:
1. Center for Superfunctional Materials
2. Department of Chemistry
3. Ulsan National Institute of Science and Technology (UNIST)
4. Ulsan 689-798
5. Korea
Abstract
Machine learning (ML) methods would significantly reduce the computational burden of catalysts screening for nitrogen reduction reaction (NRR).
Funder
National Research Foundation of Korea
Korea Institute of Science and Technology Information
Publisher
Royal Society of Chemistry (RSC)
Subject
General Materials Science,Renewable Energy, Sustainability and the Environment,General Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2020/TA/C9TA12608B
Reference56 articles.
1. Accelerated DFT-Based Design of Materials for Ammonia Storage
2. Ammonia for hydrogen storage: challenges and opportunities
3. Ruthenium Nanocatalysts for Ammonia Synthesis: A Review
4. Review of electrochemical ammonia production technologies and materials
5. Detonator of the population explosion
Cited by 154 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Directly predicting N2 electroreduction reaction free energy using interpretable machine learning with non-DFT calculated features;Journal of Energy Chemistry;2024-10
2. Advancing CO2RR with O-Coordinated Single-Atom Nanozymes: A DFT and Machine Learning Exploration;ACS Catalysis;2024-09-09
3. A bibliographic analysis of optimization of hydrogen production via electrochemical method using machine learning;Fuel;2024-09
4. Integrated Supervised and Unsupervised Machine Learning Approach to Map the Electrochemical Windows Over 4500 Solvents for Battery Applications;ACS Applied Materials & Interfaces;2024-07-31
5. Design of Single‐Atom Catalysts on C5N2 for Nitrogen Fixation at Ambient Conditions: A First‐Principles Study;Chemistry – A European Journal;2024-07-23
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3