Research on the Mechanism of Kaempferol for Treating Senile Osteoporosis by Network Pharmacology and Molecular Docking

Author:

Tang Fuyu12,Zhang Peng13ORCID,Zhao Wenhua13,Zhu Guangye1,Shen Gengyang4,Chen Honglin134,Yu Xiang4,Zhang Zhida4,Shang Qi13,Liang De4,Jiang Xiaobing34ORCID,Ren Hui34ORCID

Affiliation:

1. Guangzhou University of Chinese Medicine, Guangzhou 510405, China

2. Liuzhou Hospital of Chinese Medicine (Liuzhou Hospital of Zhuang Medicine), Guangxi Zhuang Autonomous Region, Liuzhou, 545000, China

3. Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China

4. The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China

Abstract

Kaempferol (KP), as a natural anti-inflammatory compound, has been reported to have curative effects on alleviating senile osteoporosis (SOP), which is an inflammation-related musculoskeletal disease, but the molecular mechanisms remain unclear due to scanty relevant studies. We predicted the targets of KP and SOP, and the common targets of them were subsequently used to carry out PPI analysis. Moreover, we adopted GO and KEGG enrichment analysis and molecular docking to explore potential mechanisms of KP against SOP. There were totally 152 KP-related targets and 978 SOP-related targets, and their overlapped targets comprised 68 intersection targets. GO enrichment analysis showed 1529 biological processes ( p < 0.05 ), which involved regulation of inflammatory response, oxidative stress, regulation of bone resorption and remodeling, osteoblast and osteoclast differentiation, etc. Moreover, KEGG analysis revealed 146 items including 44 signaling pathways ( p < 0.05 ), which were closely linked to TNF, IL-17, NF-kappa B, PI3K-Akt, MAPK, estrogen, p53, prolactin, VEGF, and HIF-1 signaling pathways. By means of molecular docking, we found that kaempferol is bound with the key targets’ active pockets through some connections such as hydrogen bond, pi-alkyl, pi-sigma, pi-pi Stacked, pi-pi T-shaped, and van der Waals, illustrating that kaempferol has close combination with the key targets. Collectively, various targets and pathways involve in the process of kaempferol treatment against SOP through regulating inflammatory response, oxidative stress, bone homeostasis, etc. Moreover, our study first reported that kaempferol may regulate core targets’ expression with involvement of inflammatory response, oxidative stress, and bone homeostasis, thus treating SOP.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3