A Novel Memductor-Based Chaotic System and Its Applications in Circuit Design and Experimental Validation

Author:

Xiong Li123ORCID,Lu Yanjun1ORCID,Zhang Yongfang4ORCID,Zhang Xinguo5

Affiliation:

1. School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an 710048, China

2. School of Physics and Electromechanical Engineering, Hexi University, Zhangye 734000, China

3. State Key Laboratory of ASIC & System, Fudan University, Shanghai 200433, China

4. School of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China

5. School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China

Abstract

This paper is expected to introduce a novel memductor-based chaotic system. The local dynamical entities, such as the basic dynamical behavior, the divergence, the stability of equilibrium set, and the Lyapunov exponent, are all investigated analytically and numerically to reveal the dynamic characteristics of the new memductor-based chaotic system as the system parameters and the initial state of memristor change. Subsequently, an active control method is derived to study the synchronous stability of the novel memductor-based chaotic system through making the synchronization error system asymptotically stable at the origin. Further to these, a memductor-based chaotic circuit is designed, realized, and applied to construct a new memductor-based secure communication circuit by employing the basic electronic components and memristor. Furthermore, the design principle of the memductor-based chaotic circuit is thoroughly analyzed and the concept of “the memductor-based chaotic circuit defect quantification index” is proposed for the first time to verify whether the chaotic output is consistent with the mathematical model. A good qualitative agreement is shown between the simulations and the experimental validation results.

Funder

Open Project of State Key Laboratory of ASIC & System

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3