Affiliation:
1. College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
2. School of Electronic Information Engineering, Xi’an Technological University, Xi’an 710021, China
Abstract
Based on the variable gain extended state observer, a finite-time fault-tolerant control strategy is developed for the quadrotor unmanned aerial vehicle with actuator faults and external disturbances. Firstly, a novel variable gain extended state observer is designed to estimate the unknown external disturbances, which mitigates the initial peaking phenomenon existing in traditional extended state observer-based methods. Meanwhile, the neural networks are applied to accurately approximate unknown couplings online. Moreover, with the help of the projection operator technique, the unknown actuator faults are observed in real time. Combined with the backstepping framework, the finite-time robust fault-tolerant control scheme is constructed and the stability is strictly proved via Lyapunov’s theory. Finally, the validity of the developed control scheme is demonstrated through numerical simulations.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献