Estimating Salt Concentrations Based on Optimized Spectral Indices in Soils with Regional Heterogeneity

Author:

Kahaer Yasenjiang12ORCID,Tashpolat Nigara12ORCID

Affiliation:

1. College of Resources and Environment Sciences, Xinjiang University, Urumqi 830046, China

2. Ministry of Education Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830046, China

Abstract

Soil salinity is one of the most damaging environmental problems worldwide, especially in arid and semiarid regions. The objectives of this study were to improve the inversion accuracy of soil salt content (SSC) in soils with spectral heterogeneity by using optimized spectral indices. Soil samples at a 0–20 cm depth were taken from Keriya Oasis (98 soil samples), Ugan-Kuqa Oasis (49 soil samples), and Ebinur Lake Basin (57 soil samples). SSC and spectral reflectance (SR) of all the 204 soil samples were determined. To comprehensively analyze the field-collected hyperspectral data, various band combinations were used to calculate a normalized difference spectral index (NDSI) and ratio spectral index (RSI). Then, the relationships between the indices and SSC were examined, and the most robust relationships were demonstrated. The partial least squares regression (PLSR) method was utilized to develop a predictive model of SSC, and the variable importance in the projection (VIP) method was used during modeling. The results revealed that (i) the salinized soils in different regions had apparent differences in both reflectance and spectral curve morphology, but the optimized spectral indices method effectively overcame the regional heterogeneity of salinized soil hyperspectral characteristics, and the correlation with SSC was always kind, with correlation coefficients up to 0.748 at 0.001 level of significance; (ii) the VIP filtering method effectively selected the optimal independent model, and the modeling accuracy was better than the single optimization index (R2Pre = 0.83 and RMSEPre = 2.31 g·kg−1) by using the combination of two optimal indices; (iii) although the global modeling accuracy was significantly lower than the local modeling accuracy due to the inconsistent salt sensitivity bands of salinized soils in different regions, combined with cross-validation analysis, the global model had the ability to predict soil salinization accurately (R2Pre = 0.69 and RMSEPre = 8.45 g·kg−1). The methods developed in this study can be applied in other arid and semiarid areas. Besides, the study also provides examples for aerospace hyperspectral remote sensing of cross-regional soil salinization.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Spectroscopy,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3