Simple One-Step Leaf Extract-Assisted Preparation of α-Fe2O3 Nanoparticles, Physicochemical Properties, and Its Sunlight-Driven Photocatalytic Activity on Methylene Blue Dye Degradation

Author:

Archana V.1ORCID,Joseph Prince J.1ORCID,Kalainathan S.2ORCID

Affiliation:

1. Department of Physics, University College of Engineering, Anna University-BIT Campus, Tiruchirappalli 620024, Tamil Nadu, India

2. Centre for Nanotechnology Research, VIT, Vellore, Tamil Nadu 632014, India

Abstract

Hematite nanoparticles have been prepared from Moringa oleifera leaf extracts. Phytochemicals are derived from plant extracts which act as a stabilizing and capping agent as well as a surfactant. This green route protocol is attractive owing to its speed, reliability, and ecofriendly and cost-effective qualities. The synthesized iron oxide nanoparticles were subjected to three different calcination temperatures (500, 600, and 700°C). The crystallinity nature and phase purity have been confirmed by powder X-ray diffraction (PXRD). Optical properties have been studied by UV-visible (UV-vis) and diffuse reflectance spectroscopy (DRS). A very narrow bandgap was observed, and absorbance was observed at the visible region. Photoluminescence spectra have exhibited a multicolor emission band from the near UV to visible region due to defect centers (F centers). EDX (energy dispersive X-ray spectrum) has given information on the stoichiometric ratio of Fe and O. The functional groups which are responsible for nanoparticle formation have been identified by Fourier transformed infrared spectroscopy (FTIR), surface morphology transformation has been illustrated by scanning electron microscopy (SEM) studies, and VSM measurements have exhibited a hysteresis curve that shows the weak and strong ferromagnetic behavior in nature at RT. TEM micrographs have confirmed that particles are in the nanorange, matching the results from the XRD report. The SAED pattern gives information on the polycrystalline nature of hematite nanoparticles. TG-DSC characterization revealed phase transition, decomposition, and weight loss information. Frequency-dependent electrical properties were studied. Here, we report what the present studies have revealed: that hematite nanopowder prepared from the green route is environmentally friendly, takes a short time to prepare, is an economical and promising candidate material for electromagnetic devices and ferromagnet manufacturing, and is a photocatalyst in water treatment applications without adding additives (H2O2).

Funder

Anna University

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3