Biosynthesis of iron oxide nanoparticles using plant extracts and evaluation of their antibacterial activity

Author:

Elkhateeb Omima,Atta Mohamed B.,Mahmoud Esawy

Abstract

AbstractThe biosynthesis of iron oxide nanoparticles has received increasing attention in the field of food nanotechnology because of their non-toxicity, high efficiency, high antibacterial power, and decontamination features. Therefore, biosynthesis of iron oxide nanoparticles (nFe) was prepared from the leaves of some vegetables, such as cabbage (C) and turnips (T), as well as moringa leaves (M). Alcoholic extracts of these nanoparticles were also tested on Staphylococcus aureus and Escherichia coli to evaluate their antibacterial activity. The results revealed that the particle sizes of the biosynthesis nanomaterials studied ranged from 12.99 to 22.72 nm, and the particles were spherical, irregular, and surrounded by black color. It also contains many functional groups and minerals. Iron nanoparticles modified with Moringa oleifera extract at a concentration of 200 ppm had the highest phenol content compared to other biosynthesis nanoparticles studied. TnFe and MnFe at 200 ppm had a maximum zone of inhibition of 25 mm and 24 mm against Staphylococcus aureus and Escherichia coli, respectively. While the minimum inhibition zone of 8.0 mm was observed at 25 ppm for nFe against Escherichia coli. Therefore, it is recommended to use these extracts of biosynthesis iron oxide nanoparticles as antibacterial agents for stored foods.

Funder

Tanta University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3