Optimizing the Raman signal for characterizing organic samples: The effect of slit aperture and exposure time

Author:

Lázaro João Carlos1,Pacheco Marcos Tadeu T.2,Rodrigues Kátia Calligaris1,de Lima Carlos José2,Moreira Leonardo Marmo23,Villaverde Antonio Balbin2,Silveira Jr. Landulfo2

Affiliation:

1. Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba, São José dos Campos, SP, Brazil

2. Núcleo de Engenharia Biomédica, Universidade Camilo Castelo Branco, São José dos Campos, SP, Brazil

3. Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba, Av. Shishima Hifumi, 2911, 12244-000, S&o José dos Campos, SP, Brazil

Abstract

The present work is focused on the influence of the slit aperture and time exposure of the infrared light on the Charge Coupled Device (CCD) in relation to their physical effects, in order to improve the Raman spectrum characteristics. Indeed, the alterations in slit aperture and CCD time exposure affect significantly important spectral properties, such as the spectral intensity, Signal to Noise Ratio (SNR) and band width resolution of the Raman spectra. Therefore, the present proposal has the aim of to found the optimum conditions of instrumental arrangement, involving the minimum collection time and maximum signal quality in dispersive Raman spectrometers. Samples of dehydrated human teeth and naphthalene were evaluated with a Raman dispersive spectrometer employing excitation wavelength of 830 nm in several integration times and spectrometer slit apertures. The analysis of the spectral intensity, SNR and band width of selected Raman peaks allowed to infer that these properties of a dispersive Raman spectrum depend directly of the exposure time on the detector as well as spectrograph slit aperture. It is important to register that the higher SNR was obtained with higher exposure time intervals. To the samples evaluated in the present article, the band width has lower values for slit apertures of 100–150 μm, i.e., in this aperture range the spectral resolution is maximum. On the publisher-id hand, the intensity and SNR of the Raman spectra becomes optimal for slit apertures of 150–200 μm, since this aperture does not affect significantly the integrity of the Raman signal. In this way, we can to propose that in approximately 150 μm, it is possible to obtain an optimum condition, involving spectral resolution as well as SNR and spectral intensity. In any case, depending of the priorities of each spectral measurement, the instrumental conditions can be altered according with the necessities of each specific chemical analysis involving a determined sample. The present data are discussed in details in agreement with recent data from literature.

Publisher

Hindawi Limited

Subject

Spectroscopy

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3