Data-Driven Technology in Event-Based Vision

Author:

Sun Ruolin1ORCID,Shi Dianxi23ORCID,Zhang Yongjun2,Li Ruihao23,Li Ruoxiang1

Affiliation:

1. College of Computer, National University of Defense Technology, Changsha, China

2. Artificial Intelligence Research Center, National Innovation Institute of Defense Technology, Beijing, China

3. Tianjin Artificial Intelligence Innovation Center, Tianjin, China

Abstract

Event cameras which transmit per-pixel intensity changes have emerged as a promising candidate in applications such as consumer electronics, industrial automation, and autonomous vehicles, owing to their efficiency and robustness. To maintain these inherent advantages, the trade-off between efficiency and accuracy stands as a priority in event-based algorithms. Thanks to the preponderance of deep learning techniques and the compatibility between bio-inspired spiking neural networks and event-based sensors, data-driven approaches have become a hot spot, which along with the dedicated hardware and datasets constitute an emerging field named event-based data-driven technology. Focusing on data-driven technology in event-based vision, this paper first explicates the operating principle, advantages, and intrinsic nature of event cameras, as well as background knowledge in event-based vision, presenting an overview of this research field. Then, we explain why event-based data-driven technology becomes a research focus, including reasons for the rise of event-based vision and the superiority of data-driven approaches over other event-based algorithms. Current status and future trends of event-based data-driven technology are presented successively in terms of hardware, datasets, and algorithms, providing guidance for future research. Generally, this paper reveals the great prospects of event-based data-driven technology and presents a comprehensive overview of this field, aiming at a more efficient and bio-inspired visual system to extract visual features from the external environment.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3