Event-Sensitive Network: A Construction Algorithm of Agricultural Sensor Network Driven by Environmental Change

Author:

Xu Shipu12ORCID,Liu Yong12ORCID,Hu WenWen12ORCID,Wu Yingjing12ORCID,Liu Sijia3ORCID,Wang Yunsheng12ORCID,Liu Chang4

Affiliation:

1. Institute of Agricultural Information Science and Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China

2. Shanghai Engineering and Technological Research Center for Digital Agriculture, Shanghai 201403, China

3. Department of Railway Transportation, Shanghai Institute of Technology, Shanghai 201418, China

4. School of Information Engineering, Nanchang Hangkong University, Nanchang, Jiangxi 330038, China

Abstract

In a wireless sensor network, the sensor nodes transmit the acquired information to the server through the data transmission link. On the serverside, the data are processed, fused, and expressed to serve the user. Sensor deployment is a key factor related to the stability and security of wireless networks. This article uses environmental changes to drive related technologies to deploy wireless sensors. In this article, environmental change-driven means that through certain deployment cost model assumptions and problem descriptions, network deployment is artificially divided into two stages: initial deployment and redeployment. In the deployment phase, by referring to the idea of virtual force, a new sensor deployment algorithm is proposed in the redeployment phase, which can well solve the stability- and security-related issues encountered in agricultural wireless sensor networks. In this algorithm, the moving distance of the mobile receiver and the average coverage of the network are calculated based on the virtual force, the direction, and the number of adjacent clusters. Finally, the algorithm model was simulated in MATLAB, and the feasibility of the algorithm was verified by analyzing the event coverage and the moving distance of nodes. The final simulation results show that the algorithm proposed in this paper can achieve better performance than existing algorithms in terms of average coverage and moving distance.

Funder

Shanghai Academy of Agricultural Sciences

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3