High-Order Sliding Mode Control for Networked Control System with Dynamic Noncooperative Game Scheduling

Author:

Wang Weixuan1ORCID,Xie Shousheng1,Zhou Bin1,Peng Jingbo1,Wang Lei1,Wang Hao1,Zhang Yu1

Affiliation:

1. Aeronautics Engineering College, Air Force Engineering University, Xi’an, China

Abstract

Specific to the NCSs where sensor signals can be processed centrally, a collaborative design scheme of dynamic game scheduling and advanced control theory was proposed in the present study. Firstly, by using the Jordan standard state space equation of the research object, the three elements of state noncooperative game were built, and the existence and uniqueness of Nash equilibrium solution were verified. In addition, the iterative equation of the scheduling matrix was derived by complying with the designed utility function. Secondly, refer to the number of restricted states the order of sliding mode was determined. And based on it, the corresponding sliding surface was designed. Subsequently, the quadratic optimization theory was adopted to regulate the control value following the implementation of the scheduling strategy to ensure that the control quality was further enhanced in the limited network service. Lastly, a TrueTime simulation example is established to verify the effectiveness of the proposed scheme.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3